13EE3106-LINEAR CONTROL SYSTEMS (Common for EEE, ECE)

Instruction/week: 4 hrs. Univ. Exam: 3 hrs. Max. Sessional marks: 40 Univ. Exam marks: 60

<u>UNIT –I</u>

Introduction to classical control systems: Open loop and closed loop control systems- Types of feedback, Feedback and its effects- Transfer functions - block diagrams and their reduction-signal flow graphs - Mason's gain formula.

<u>UNIT-II</u>

Mathematical modeling of physical systems: Mathematical modeling and transfer functions of electrical, mechanical and electro-mechanical elements. DC servo motors- two phase A.C. servo motors – synchros.

<u>UNIT-III</u>

Time domain analysis: Introduction, Standard test signals, Time response of first order and second order systems – steady state error and error constants-effect of adding a zero to a system, design specification of second order system.

Stability of control systems: Routh Hurwitz criterion- Root Locus – rules for the construction of root loci- Introduction to proportional, derivative and integral controllers.

UNIT-IV

Frequency domain Analysis: introduction- Frequency domain specifications-Polar plots – Gain and Phase margin- Bode Plots- Phase and Gain margin- Nyquist stability criterion-Gain and Phase margin. Constant M-circles and N-circles. Nichols Chart.

<u>UNIT-V</u>

Design of compensators: Introduction - Need for compensators, Lag and Lead compensators design in frequency domain.

TEXT BOOKS:

- 1. "Control system Engineering" by I.J.Nagrath and M.Gopal, Wiley Eastern Ltd.
- 2. "Control Systems" by A. Anand kumar PHI publishers

REFERENCES:

- 1. "Automatic Control systems" by B.C.Kuo, PHI publishers.
- 2. "Modern Control Engineering" by K.Ogata, Pearson education. .
- 3. "Control system Engineering" by NISE, Wiley, 2000.